a-Si-24¶
A dataset of synthetic amorphous Silicon structures, taken from Signatures of paracrystallinity in amorphous silicon. Each structure is the final snapshot from a unique melt-quench MD trajectory. The combined dataset covers a wide range of quench rates and densities, and includes the labels from the MTP \(M_{16}^{''}\) potential used to generate the structures.
>>> from load_atoms import load_dataset
>>> load_dataset("a-Si-24")
a-Si-24:
structures: 3,069
atoms: 1,317,240
species:
Si: 100.00%
properties:
per atom: (forces)
per structure: (energy, label)
Citation¶
If you use this dataset in your work, please cite the following:
@misc{Rosset-24-07,
title = {Signatures of Paracrystallinity in Amorphous Silicon},
author = {
Rosset, Louise A. M. and Drabold, David A.
and Deringer, Volker L.
},
year = {2024},
doi = {10.48550/arXiv.2407.16681},
}
Properties¶
Per-atom:
Property |
Units |
Type |
Description |
---|---|---|---|
|
eV/Å |
force vectors (as labelled by MTP) |
Per-structure:
Property |
Units |
Type |
Description |
---|---|---|---|
|
eV |
|
energy of the structure (as labelled by MTP) |
|
a unique identifier for each structure |
Miscellaneous information¶
a-Si-24
is imported as an
InMemoryAtomsDataset
:
Importer script for a-Si-24
from __future__ import annotations
from pathlib import Path
from typing import Iterator
import ase
import ase.io
from ase import Atoms
from load_atoms.database.backend import BaseImporter
from load_atoms.database.internet import FileDownload
from load_atoms.progress import Progress
_HASHES = {
64: "25627b8c50d9",
216: "da49808517c3",
512: "654e2e1d1349",
1000: "ae52f05f2231",
}
class Importer(BaseImporter):
@classmethod
def files_to_download(cls) -> list[FileDownload]:
_base_url = (
"https://github.com/lamr18/aSi-data/raw/refs/heads/main/data/xyz/"
)
return [
FileDownload(
url=f"{_base_url}{n}-atoms.xyz",
expected_hash=hash,
)
for n, hash in _HASHES.items()
]
@classmethod
def get_structures(
cls, tmp_dir: Path, progress: Progress
) -> Iterator[Atoms]:
with progress.new_task("Parsing files", total=len(_HASHES)) as task:
for n in _HASHES:
path = tmp_dir / f"{n}-atoms.xyz"
for atoms in ase.io.iread(path, index=":"):
del atoms.info["cell_origin"], atoms.info["config_type"]
yield atoms
task.update(advance=1)
DatabaseEntry
for a-Si-24
name: a-Si-24
year: 2024
category: Synthetic Data
minimum_load_atoms_version: 0.3
description: |
A dataset of synthetic amorphous Silicon structures, taken from
`Signatures of paracrystallinity in amorphous silicon <https://arxiv.org/abs/2407.16681>`__.
Each structure is the final snapshot from a unique melt-quench MD trajectory.
The combined dataset covers a wide range of quench rates and densities, and includes the labels
from the MTP :math:`M_{16}^{''}` potential used to generate the structures.
citation: |
@misc{Rosset-24-07,
title = {Signatures of Paracrystallinity in Amorphous Silicon},
author = {
Rosset, Louise A. M. and Drabold, David A.
and Deringer, Volker L.
},
year = {2024},
doi = {10.48550/arXiv.2407.16681},
}
per_atom_properties:
forces:
desc: force vectors (as labelled by MTP)
units: eV/Å
per_structure_properties:
energy:
desc: energy of the structure (as labelled by MTP)
units: eV
label:
desc: a unique identifier for each structure
representative_structure: 10