C-GAP-20U¶
>>> from load_atoms import load_dataset
>>> load_dataset("C-GAP-20U")
C-GAP-20U:
structures: 6,088
atoms: 400,275
species:
C: 100.00%
properties:
per atom: (forces)
per structure: (config_type, energy, free_energy, stress, virial)
License¶
This dataset is licensed under the GPLv3 license.
Citation¶
If you use this dataset in your work, please cite the following:
@article{Rowe-20-07,
title = {An Accurate and Transferable Machine Learning Potential for Carbon},
author = {Rowe, Patrick and Deringer, Volker L. and Gasparotto, Piero and Cs{\'a}nyi, G{\'a}bor and Michaelides, Angelos},
year = {2020},
journal = {The Journal of Chemical Physics},
volume = {153},
number = {3},
pages = {034702},
doi = {10.1063/5.0005084},
}
Properties¶
Per-atom:
Property |
Units |
Type |
Description |
---|---|---|---|
|
eV/Å |
force vectors (DFT) |
Per-structure:
Property |
Units |
Type |
Description |
---|---|---|---|
|
eV |
|
total structure energy (DFT) |
|
eV |
|
total structure free energy (DFT) |
|
eV |
virial stress tensor (DFT) |
|
|
eV Å\({}^{-3}\) |
stress tensor (DFT)
(
- virial / cell.volume ) |
|
|
category of structure |
Miscellaneous information¶
C-GAP-20U
is imported as an
InMemoryAtomsDataset
:
Importer script for C-GAP-20U
from load_atoms.database.backend import BASE_GITHUB_URL, SingleFileImporter
from load_atoms.database.internet import FileDownload
class Importer(SingleFileImporter):
@classmethod
def file_to_download(cls) -> FileDownload:
return FileDownload(
url=f"{BASE_GITHUB_URL}/C-GAP-20U/C-GAP-20U.xyz",
expected_hash="da0462802df1",
)
DatabaseEntry
for C-GAP-20U
name: C-GAP-20U
year: 2020
description: |
The complete dataset used for training the
`C-GAP-20U <https://pubs.aip.org/aip/jcp/article/153/3/034702/1062660/An-accurate-and-transferable-machine-learning>`_
interatomic potential for carbon.
Suitably converged labels were obtained with revised DFT settings, see `CAM.840-6 <https://doi.org/10.17863/CAM.84096>`_.
category: Potential Fitting
minimum_load_atoms_version: 0.2
citation: |
@article{Rowe-20-07,
title = {An Accurate and Transferable Machine Learning Potential for Carbon},
author = {Rowe, Patrick and Deringer, Volker L. and Gasparotto, Piero and Cs{\'a}nyi, G{\'a}bor and Michaelides, Angelos},
year = {2020},
journal = {The Journal of Chemical Physics},
volume = {153},
number = {3},
pages = {034702},
doi = {10.1063/5.0005084},
}
license: GPLv3
per_atom_properties:
forces:
desc: force vectors (DFT)
units: eV/Å
per_structure_properties:
energy:
desc: total structure energy (DFT)
units: eV
free_energy:
desc: total structure free energy (DFT)
units: eV
virial:
desc: virial stress tensor (DFT)
units: eV
stress:
desc: |
| stress tensor (DFT)
| (:code:`- virial / cell.volume`)
units: eV Å\ :math:`{}^{-3}`
config_type:
desc: category of structure
# TODO: remove after Dec 2024
# backwards compatability: unused as of 0.3.0
files:
- name: C-GAP-20U.xyz
hash: da0462802df1