SiO2-GAP-22¶
The training database used to fit the GAP-22 potential for silica in: A Machine-Learned Interatomic Potential for Silica and Its Relation to Empirical Models. The dataset was generated using an iterative approach, in some cases driven by an emprical potential. More details are available in the supplementary information.
>>> from load_atoms import load_dataset
>>> load_dataset("SiO2-GAP-22")
SiO2-GAP-22:
structures: 3,074
atoms: 268,118
species:
O: 66.47%
Si: 33.53%
properties:
per atom: (forces)
per structure: (config_type, energy, free_energy, virial)
License¶
This dataset is licensed under the CC BY 4.0 license.
Citation¶
If you use this dataset in your work, please cite the following:
@article{Erhard-22-04,
title = {
A Machine-Learned Interatomic Potential for Silica
and Its Relation to Empirical Models
},
author = {
Erhard, Linus C. and Rohrer, Jochen
and Albe, Karsten and Deringer, Volker L.
},
year = {2022},
journal = {npj Computational Materials},
volume = {8},
number = {1},
pages = {1--12},
}
Properties¶
Per-atom:
Property |
Units |
Type |
Description |
---|---|---|---|
|
eV/Å |
force vectors (DFT) |
Per-structure:
Property |
Units |
Type |
Description |
---|---|---|---|
|
eV |
|
total structure energy (DFT) |
|
eV |
virial stress tensor (DFT) |
|
|
eV Å\({}^{-3}\) |
stress tensor (DFT)
(
- virial / cell.volume ) |
|
|
category of structure |
Miscellaneous information¶
SiO2-GAP-22
is imported as an
InMemoryAtomsDataset
:
Importer script for SiO2-GAP-22
from __future__ import annotations
from pathlib import Path
from typing import Iterator
import ase.io
from ase import Atoms
from load_atoms.database.backend import BaseImporter, rename, unzip_file
from load_atoms.database.internet import FileDownload
from load_atoms.progress import Progress
class Importer(BaseImporter):
@classmethod
def files_to_download(cls) -> list[FileDownload]:
return [
FileDownload(
url="https://zenodo.org/records/6353684/files/sio2_potential_data.zip",
expected_hash="98ea6e58f6d9",
)
]
@classmethod
def get_structures(
cls, tmp_dir: Path, progress: Progress
) -> Iterator[Atoms]:
contents = unzip_file(tmp_dir / "sio2_potential_data.zip", progress)
for structure in ase.io.iread(
contents / "sio2_potential_data/database/dataset.scan.2.xyz"
):
yield rename(structure, {"virials": "virial"})
DatabaseEntry
for SiO2-GAP-22
name: SiO2-GAP-22
year: 2022
description: |
The training database used to fit the `GAP-22 potential for silica <https://zenodo.org/records/6353684>`_ in:
`A Machine-Learned Interatomic Potential for Silica and Its Relation to Empirical Models <https://doi.org/10.1038/s41524-022-00768-w>`_.
The dataset was generated using an iterative approach, in some cases driven by an emprical potential. More details are available in the
`supplementary information <https://static-content.springer.com/esm/art%3A10.1038%2Fs41524-022-00768-w/MediaObjects/41524_2022_768_MOESM1_ESM.pdf>`_.
category: Potential Fitting
minimum_load_atoms_version: 0.2
license: CC BY 4.0
citation: |
@article{Erhard-22-04,
title = {
A Machine-Learned Interatomic Potential for Silica
and Its Relation to Empirical Models
},
author = {
Erhard, Linus C. and Rohrer, Jochen
and Albe, Karsten and Deringer, Volker L.
},
year = {2022},
journal = {npj Computational Materials},
volume = {8},
number = {1},
pages = {1--12},
}
per_atom_properties:
forces:
desc: force vectors (DFT)
units: eV/Å
per_structure_properties:
energy:
desc: total structure energy (DFT)
units: eV
virial:
desc: virial stress tensor (DFT)
units: eV
stress:
desc: |
| stress tensor (DFT)
| (:code:`- virial / cell.volume`)
units: eV Å\ :math:`{}^{-3}`
config_type:
desc: category of structure
# TODO: remove after Dec 2024
# backwards compatability: unused as of 0.3.0
files:
- url: https://zenodo.org/records/6353684/files/sio2_potential_data.zip
hash: 98ea6e58f6d9
processing:
- UnZip
- SelectFile:
file: sio2_potential_data/database/dataset.scan.2.xyz
- ReadASE
- Rename:
virials: virial