SiOx-ACE-24¶
The training database used to fit the SiOx-ACE-24 potential in: Modelling atomic and nanoscale structure in the silicon-oxygen system through active machine-learning. The dataset comprises structures taken from the Si-GAP-18 and SiO2-GAP-22 datasets, together with new structures generated using an active-learning approach.
>>> from load_atoms import load_dataset
>>> load_dataset("SiOx-ACE-24")
SiOx-ACE-24:
structures: 11,428
atoms: 1,258,198
species:
O: 55.82%
Si: 44.18%
properties:
per atom: (charge_bader, forces)
per structure: (config_type, energy, free_energy, stress, virial)
License¶
This dataset is licensed under the CC BY 4.0 license.
Citation¶
If you use this dataset in your work, please cite the following:
@article{Erhard-24-03,
title = {
Modelling Atomic and Nanoscale Structure in the
Silicon--Oxygen System through Active Machine Learning
},
author = {
Erhard, Linus C. and Rohrer, Jochen
and Albe, Karsten and Deringer, Volker L.
},
year = {2024},
journal = {Nature Communications},
volume = {15},
number = {1},
pages = {1927},
doi = {10.1038/s41467-024-45840-9},
}
Properties¶
Per-atom:
Property |
Units |
Type |
Description |
---|---|---|---|
|
eV/Å |
force vectors (DFT) |
Per-structure:
Property |
Units |
Type |
Description |
---|---|---|---|
|
eV |
|
total structure energy (DFT) |
|
eV |
|
total structure free energy (DFT) |
|
eV |
virial stress tensor (DFT) |
|
|
eV Å\({}^{-3}\) |
stress tensor (DFT)
(
- virial / cell.volume ) |
|
|
category of structure |
Miscellaneous information¶
SiOx-ACE-24
is imported as an
InMemoryAtomsDataset
:
Importer script for SiOx-ACE-24
from __future__ import annotations
from pathlib import Path
from typing import Iterator
import ase.io
from ase import Atoms
from load_atoms.database.backend import BaseImporter, rename, unzip_file
from load_atoms.database.internet import FileDownload
from load_atoms.progress import Progress
class Importer(BaseImporter):
@classmethod
def files_to_download(cls) -> list[FileDownload]:
return [
FileDownload(
url="https://zenodo.org/records/10419194/files/database.zip",
expected_hash="42eb5808b0aa",
)
]
@classmethod
def get_structures(
cls, tmp_dir: Path, progress: Progress
) -> Iterator[Atoms]:
contents = unzip_file(tmp_dir / "database.zip", progress)
for structure in ase.io.iread(
contents / "database/training.general_purpose.SiOx.xyz"
):
yield rename(
structure,
{
"dft_forces": "forces",
"dft_energy": "energy",
"dft_free_energy": "free_energy",
"dft_stress": "stress",
"dft_virials": "virial",
},
)
DatabaseEntry
for SiOx-ACE-24
name: SiOx-ACE-24
year: 2024
description: |
The training database used to fit the `SiOx-ACE-24 potential <https://zenodo.org/records/10419194>`_ in:
`Modelling atomic and nanoscale structure in the silicon-oxygen system through active machine-learning <https://www.nature.com/articles/s41467-024-45840-9>`_.
The dataset comprises structures taken from the `Si-GAP-18 <https://jla-gardner.github.io/load-atoms/datasets/Si-GAP-18.html>`__
and `SiO2-GAP-22 <https://jla-gardner.github.io/load-atoms/datasets/SiO2-GAP-22.html>`__ datasets, together
with new structures generated using an active-learning approach.
category: Potential Fitting
minimum_load_atoms_version: 0.2
license: CC BY 4.0
citation: |
@article{Erhard-24-03,
title = {
Modelling Atomic and Nanoscale Structure in the
Silicon--Oxygen System through Active Machine Learning
},
author = {
Erhard, Linus C. and Rohrer, Jochen
and Albe, Karsten and Deringer, Volker L.
},
year = {2024},
journal = {Nature Communications},
volume = {15},
number = {1},
pages = {1927},
doi = {10.1038/s41467-024-45840-9},
}
representative_structure: 7390
per_atom_properties:
forces:
desc: force vectors (DFT)
units: eV/Å
per_structure_properties:
energy:
desc: total structure energy (DFT)
units: eV
free_energy:
desc: total structure free energy (DFT)
units: eV
virial:
desc: virial stress tensor (DFT)
units: eV
stress:
desc: |
| stress tensor (DFT)
| (:code:`- virial / cell.volume`)
units: eV Å\ :math:`{}^{-3}`
config_type:
desc: category of structure
# TODO: remove after Dec 2024
# backwards compatability: unused as of 0.3.0
files:
- url: https://zenodo.org/records/10419194/files/database.zip
hash: 42eb5808b0aa
processing:
- UnZip
- SelectFile:
file: database/training.general_purpose.SiOx.xyz
- ReadASE
- Rename:
dft_forces: forces
dft_energy: energy
dft_free_energy: free_energy
dft_stress: stress
dft_virials: virial