P-GAP-20¶
The complete Phosphorus dataset used to train the P-GAP-20 model from A General-Purpose Machine-Learning Force Field for Bulk and Nanostructured Phosphorus. This dataset contains structures generated by GAP-RSS, together with liquids, crystals and isolated fragments. For more information about the dataset’s construction, see the paper’s Supplementary Information.
>>> from load_atoms import load_dataset
>>> load_dataset("P-GAP-20")
P-GAP-20:
structures: 4,798
atoms: 140,910
species:
P: 100.00%
properties:
per atom: (forces)
per structure: (energy)
License¶
This dataset is licensed under the CC BY 4.0 license.
Citation¶
If you use this dataset in your work, please cite the following:
@article{Deringer-20-10,
title = {
A General-Purpose Machine-Learning Force Field
for Bulk and Nanostructured Phosphorus
},
author = {
Deringer, Volker L. and Caro, Miguel A.
and Cs{\'a}nyi, G{\'a}bor
},
year = {2020},
journal = {Nature Communications},
volume = {11},
number = {1},
pages = {5461},
doi = {10.1038/s41467-020-19168-z},
}
Properties¶
Per-atom:
Property |
Units |
Type |
Description |
---|---|---|---|
|
eV/Å |
force vectors (DFT + MBD) |
Per-structure:
Property |
Units |
Type |
Description |
---|---|---|---|
|
eV |
|
total structure energy (DFT + MBD) |
Miscellaneous information¶
P-GAP-20
is imported as an
InMemoryAtomsDataset
:
Importer script for P-GAP-20
from load_atoms.database.backend import SingleFileImporter
from load_atoms.database.internet import FileDownload
class Importer(SingleFileImporter):
@classmethod
def file_to_download(cls) -> FileDownload:
return FileDownload(
url="https://zenodo.org/record/4003703/files/P_GAP_20_fitting_data.xyz",
expected_hash="ab3059018068",
)
DatabaseEntry
for P-GAP-20
name: P-GAP-20
year: 2020
description: |
The complete Phosphorus dataset used to train the `P-GAP-20 <https://zenodo.org/records/4003703>`_ model from
`A General-Purpose Machine-Learning Force Field for Bulk and Nanostructured Phosphorus <https://doi.org/10.1038/s41467-020-19168-z>`_.
This dataset contains structures generated by GAP-RSS, together with liquids, crystals and isolated fragments.
For more information about the dataset's construction, see the paper's `Supplementary Information <https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-19168-z/MediaObjects/41467_2020_19168_MOESM1_ESM.pdf>`__.
category: Potential Fitting
minimum_load_atoms_version: 0.2
citation: |
@article{Deringer-20-10,
title = {
A General-Purpose Machine-Learning Force Field
for Bulk and Nanostructured Phosphorus
},
author = {
Deringer, Volker L. and Caro, Miguel A.
and Cs{\'a}nyi, G{\'a}bor
},
year = {2020},
journal = {Nature Communications},
volume = {11},
number = {1},
pages = {5461},
doi = {10.1038/s41467-020-19168-z},
}
license: CC BY 4.0
representative_structure: 280
per_atom_properties:
forces:
desc: force vectors (DFT + MBD)
units: eV/Å
per_structure_properties:
energy:
desc: total structure energy (DFT + MBD)
units: eV
# TODO: remove after Dec 2024
# backwards compatability: unused as of 0.3.0
files:
- url: https://zenodo.org/record/4003703/files/P_GAP_20_fitting_data.xyz
hash: ab3059018068