Optimisation¶
- class mini_gpr.opt.optimise_model(
- m,
- objective,
- X,
- y,
- *,
- optimise_noise=False,
- max_iterations=100,
Optimise the model (kernel hyperparameters and noise) to minimise the objective function.
- Parameters:
m (mini_gpr.models.Model) – the model to optimise.
objective (mini_gpr.opt.Objective) – the objective function to minimise.
X (jaxtyping.Float[ndarray, 'N D']) – the training data.
y (jaxtyping.Float[ndarray, 'N']) – the training targets.
optimise_noise (bool) – whether to optimise the noise.
max_iterations (int) – the maximum number of iterations.
Objectives¶
- class mini_gpr.opt.Objective(*args, **kwargs)[source]¶
An objective function takes a model as input, and returns a scalar value, such that a lower value is a “better” model.
- class mini_gpr.opt.maximise_log_likelihood(model)[source]¶
Maximise the log likelihood of the model.
- Parameters:
model (Model)