.. toctree::
:maxdepth: 2
:hidden:
:caption: Tutorials
tutorials/introduction
tutorials/model-optimisation
tutorials/sparse-approx
tutorials/kernels
tutorials/real-world-use-case
.. toctree::
:maxdepth: 2
:hidden:
:caption: API Reference
api/models
api/kernels
api/opt
############
``mini-gpr``
############
.. raw:: html
hyperparameter-optimised GPR models trained on a toy 1D dataset of increasing size
``mini-gpr`` is a minimal reference implementation of `Gaussian Process Regression `__ in pure ``NumPy``, made
primarily for `my own learning `_.
Features of ``mini-gpr`` include:
- implementations of a full (:class:`~mini_gpr.models.GPR`) and low rank (:class:`~mini_gpr.models.SoR`) GPR models
- implementations of several common :doc:`kernels `
- :class:`~mini_gpr.models.Model` and :class:`~mini_gpr.kernels.Kernel` base classes for easy extension
- automated hyperparameter optimisation against a range of objectives via :class:`mini_gpr.opt.optimise_model`
- strong typing using the `jaxtyping `__ library
This documentation includes:
- a `tutorial `_ in the form of a collection of Jupyter notebooks
- a `complete API reference `_ for this small, stand-alone package