.. toctree:: :maxdepth: 2 :hidden: :caption: Tutorials tutorials/introduction tutorials/model-optimisation tutorials/sparse-approx tutorials/kernels tutorials/real-world-use-case .. toctree:: :maxdepth: 2 :hidden: :caption: API Reference api/models api/kernels api/opt ############ ``mini-gpr`` ############ .. raw:: html
1D GPR

hyperparameter-optimised GPR models trained
on a toy 1D dataset of increasing size

``mini-gpr`` is a minimal reference implementation of `Gaussian Process Regression `__ in pure ``NumPy``, made primarily for `my own learning `_. Features of ``mini-gpr`` include: - implementations of a full (:class:`~mini_gpr.models.GPR`) and low rank (:class:`~mini_gpr.models.SoR`) GPR models - implementations of several common :doc:`kernels ` - :class:`~mini_gpr.models.Model` and :class:`~mini_gpr.kernels.Kernel` base classes for easy extension - automated hyperparameter optimisation against a range of objectives via :class:`mini_gpr.opt.optimise_model` - strong typing using the `jaxtyping `__ library This documentation includes: - a `tutorial `_ in the form of a collection of Jupyter notebooks - a `complete API reference `_ for this small, stand-alone package