``orb-models`` ============== ``graph-pes`` supports the conversion of arbitrary ``orb-models`` models to :class:`~graph_pes.GraphPESModel` objects via the :class:`~graph_pes.interfaces._orb.OrbWrapper` class. Use the :func:`~graph_pes.interfaces.orb_model` function to load a pre-trained ``orb-models`` model and convert it into a :class:`~graph_pes.GraphPESModel`. You can then use this model in the same way as any other :class:`~graph_pes.GraphPESModel`, for instance by :doc:`fine-tuning it <../quickstart/fine-tuning>` or using it to run MD via :doc:`torch-sim <../tools/torch-sim>`, :doc:`ASE <../tools/ase>` or :doc:`LAMMPS <../tools/lammps>`: .. code-block:: python from graph_pes.interfaces import orb_model from graph_pes import GraphPESModel model = orb_model() assert isinstance(model, GraphPESModel) # do stuff ... You can also reference the :func:`~graph_pes.interfaces.orb_model` function in your training configs for :doc:`graph-pes-train <../cli/graph-pes-train/root>`: .. code-block:: yaml model: +orb_model: name: orb-v3-direct-20-omat If you use any ``orb-models`` models in your work, please visit the `orb-models `_ repository and cite the following: .. code-block:: bibtex @misc{rhodes2025orbv3atomisticsimulationscale, title={Orb-v3: atomistic simulation at scale}, author={ Benjamin Rhodes and Sander Vandenhaute and Vaidotas Å imkus and James Gin and Jonathan Godwin and Tim Duignan and Mark Neumann }, year={2025}, eprint={2504.06231}, archivePrefix={arXiv}, primaryClass={cond-mat.mtrl-sci}, url={https://arxiv.org/abs/2504.06231}, } @misc{neumann2024orbfastscalableneural, title={Orb: A Fast, Scalable Neural Network Potential}, author={ Mark Neumann and James Gin and Benjamin Rhodes and Steven Bennett and Zhiyi Li and Hitarth Choubisa and Arthur Hussey and Jonathan Godwin }, year={2024}, eprint={2410.22570}, archivePrefix={arXiv}, primaryClass={cond-mat.mtrl-sci}, url={https://arxiv.org/abs/2410.22570}, } Installation ------------ To install ``graph-pes`` with support for ``orb-models`` models, you need to install the `orb-models `_ package alongside ``graph-pes``. We recommend doing this in a new environment: .. code-block:: bash conda create -n graph-pes-orb python=3.10 conda activate graph-pes-orb pip install graph-pes orb-models Interface --------- .. autofunction:: graph_pes.interfaces.orb_model .. autoclass:: graph_pes.interfaces._orb.OrbWrapper :members: orb_model